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Enhancement in the dynamic response of a viscoelastic fluid flowing
through a longitudinally vibrating tube
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We analyzed the effects of elasticity on the dynamics of fluids in porous media by studying the flow of a
Maxwell fluid in a tube, which oscillates longitudinally and is subject to an oscillatory pressure gradient. The
present study investigates novelties brought about in the classic Biot theory of propagation of elastic waves in
a fluid-saturated porous solid by inclusion of non-Newtonian effects that are important, for example, for
hydrocarbons. Using the time Fourier transform and transforming the problem into the frequency domain, we
calculateda) the dynamic permeability, and) the functionF () that measures the deviation from Poiseuille
flow friction as a function of frequency parameter This provides a more complete theory of the flow of
Maxwell fluid through a longitudinally oscillating cylindrical tube with an oscillating pressure gradient, which
has important practical applications. This study clearly shows the transition from a dissipative regime to an
elastic regime in which sharp enhancemegn¢sonancesof the flow are found.
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[. INTRODUCTION sure gradient. We combine this theory with the effect of
acoustic oscillations of the walls of a tube introduced by Biot
A quantitative theory of propagation of elastic waves in a[1], providing a complete description of the interaction of

fluid-saturated porous solid was formulated in classic paper®axwell fluid, filling the pores, with acoustic waves.
by Biot [1]. One of the major findings of Biot's work was Finally, in order to emphasize that the concept of dynamic
that there is a breakdown in Poisseuille flow above a certaiRermeability is an adequate way to describe the phenom-
characteristic frequency specific to the fluid-saturated porou§non, we note that this concept has been widely used before
material. Biot theoretically studied this phenomenon by conl3)- In the Sec. II, we formulate our model, and Sec. Ili
sidering the flow of a viscous fluid in a tube with longitudi- concludes with a discussion of the results.
nally oscillating walls under an oscillatory pressure gradient.
Apart from its fundamental interest, the investigation of the Il. MODEL

dynamics of fluid in porous media, under an oscillatory pres- | this section we present our model of a Maxwell fluid

sure gradient and oscillating pore walls, is of prime impor-fiowing in a cylindrical tube whose walls are oscillating lon-

tance for the recently emerged technology of acoustic stimugitudinally and the fluid is subject to an oscillatory pressure
lation of oil reservoirs[2]. For example, it is known that gradient. We give analytical solutions of the problem in the
natural pressure in an oil reservoir generally yields no morgrequency domain.

than approximately 10% oil recovery. The residual oil is dif- The governing equations of the problem consist of the
ficult to produce due to its naturally low mobility, and the continuity equation for the incompressible fluid,

enhanced oil recovery operations are used to increase pro- ..

duction. It was experimentally proven that there is a substan- V-v=0, 1)

tial increase in the net fluid flow through porous space if the

latter is treated with elastic waves. However, there is a funf’lnd the linearized momentum equation,

damental lack of understanding of the physical mechanisms o0
of fluid mobilization in saturated rock through the effect of i _ﬁp_ﬁ}_ 2

elastic waves; the theory of such mobilization virtually does
not exist. Biot's theory can be used to describe the interac- - ) )
tion of a fluid-saturated solid with the sound for a classicHerev, p, andp denote velocity, pressure, and mass density
Newtonian fluid; however, oil and other hydrocarbons ex-of the fluid, whereas represents the viscous stress tensor.
hibit significant non-Newtonian behavif8]. The aim of this We describe the viscoelatic effects of the fluid using Max-
paper is therefore to incorporate non-Newtonian effects intovell's model, which assumes that
the classical study of Bidtl]. 5
Recently, del Rio, Lopez de Haro, and Whitakét pre- T
sented a study of enhancement in the dynamic response of a tmﬁ
viscoelastic (Maxwell) fluid flowing in a stationary
(nonoscillating tube under the effect of an oscillatory pres- where 5 is the viscosity coefficient, antj, is the relaxation
time.
Now let u be the velocity of the wall of the tube which
*Email address: dtsiklau@iastate.edu beresnev@iastate.edu  oscillates in time ag~'“!, wherew is the angular frequency.

=—nVu—Tr, 3)
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confirming the existence of sharp resonanceKbd{w) in

oscillating walls can be described by a single component ofhe elastic regimdsee below for the definition of this re-

the velocity, namely, itz component, (the z axis is along
the centerline of the tupeWe use the cylindrical coordinate
system €, ,z) in the treatment of the problem. We intro-
duce the relative velocity; asU;=v,—u. Thus, assuming
that all physical quantities vary in time as'!, we arrive at
the following master equation fad:

0ty tio

VU, + ——f(l—iwt ) (4)
1 1 v m/ -

Here we have introduced the notations

|

Ju
Vp'f'pﬁ

X=—

which is a sum of the applied pressure gradient and force

exerted on the fluid from the oscillating wall of the tube and
v, which is v=7/p. Note that a no-slip boundary condition
at the wall is assumed.

The solution of Eq(4) can be found to b§l]

Uy

X
- m*’CJo(,Br),

whereJ, is the Bessel function, and= \/(wztm+iw)lv.
Applying a no-slip boundary conditiob,(a)=0 at the
wall of the tube, whera is its radius, we finally obtain

X Jo(Br)
D= S6a)
. Xa¥(l-iety) 1 [ Jo(Br)
R
Defining the cross-section-averaged velocity as
_ 2 (a
U1=52J0 U, (r)rdr,
we obtain
—  Xa(l-iety) 1 [ 23y (Ba) |
VT T Badlt (BadiBa =K(‘””(<é)

HereK(w) is the dynamic permeability4] that describes the

frequency dependent response of the tube to the applied total

force on the fluid. A simple comparison reveals that ).
closely resembles Ed6) of Ref. [4], with the only differ-
ence being that we havein place of theirgp/dz. Note that

in the case of stationary tube wallp(du/dt)—0] Eq. (6)
coincides exactly with Eq(6) of Ref.[4]. A simple calcula-
tion (applying L'Hospital rule for the 0/0 uncertaintghows
that lim,_oK(w)=a?%(8v). Thus, following Ref.[4], we
will introduce the dimensionless dynamic permeability as
K*(w)=K(w)/K(0), which will be used latefsee Fig. 7.
Note that we were easily able to reproduce Fig. 1 of R&f.

gime).
Following the work of Biot[1], we calculate the stress at
the wall 7

n [dUi)
1-iwt,| or

_ mBX  Jy(Ba)
Ciw(l-ioty) Jo(Ba)”
(7)

Note that whent,,— 0, this expression obviously coincides
with the corresponding Newtonian form.

The total friction force is zZrar. Following Biot, we cal-
culate the ratio of the total friction force to the average ve-
locity, i.e.,

T=—

r=a

2mar _ 2my(Ba)[Ii(Ba)/Iy(Ba)]

Ul (1-ioty)
2Jy(Ba) |7t ®
(Ba)do(Ba)
A simple analysis reveals that
~ 2mar
lim——=8wnp,
w—0 U]_

which corresponds to the limiting case of the Poiseuille flow.
Following Biot[1], we also introduce a functioR(«), with
k=aywlv, in the following manner:

2mwar
——=87wyF(k);
1
thus
F(x) 1 &Vi+ k2 al I (kVi+ & a)lIo(kVi+ kP a)]
K)=—=
4 (1—-ik% a)
| 1- 2J,(kVi+ k%l a) o ©
K i+K2/aJO(K‘/i+K2/a)
=
B
g
~
=
B
&=

FIG. 1. Behavior of R («)] (solid line and InfF(«)]
(dashed lingas functions ofk according to Eq(9). Herea=o.
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FIG. 2. Same as in Fig. 1, but fer=10%

Note thatF(x) measures the deviation from the Poiseuille

flow friction as a function of the frequency parameigras

introduced by Biof 1].

In Eq. (9), « denotes the Deborah numbel], which is
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FIG. 4. Same as in Fig. 1, but far=10.0.

Figure 4 presents the behavior of [Réx)] and
Im[F(x)] when «=10.0. As can be seen from the graph,

sharp resonances appear on the curves. This feature can be

explained by the fact that in this casgeis less thana,

defined as the ratio of the characteristic time of viscous efwhich means that the system switches from a dissipative

fects t,=a’/v to the relaxation timet,,, i.e. a=t,/t,

=a®/(vt,,). As noted in Ref[4], the value of the parameter
a determines in which regime the system resides. Beyond see more irregular behaviors of € «)] and InjF(«)]
certain critical value ¢.=11.64), the system is dissipative, with a number of irregular spikes.

and viscous effects dominate. On the other hand, for small
(a<a;) the system exhibits a viscoelastic behavior whichFig. 6, where we plot the solutions for the case when
=10"2. In this case a notable change is that there are fewer
Note that the Newtonian flow regime can be easily recovbut more pronounced spikes. [l «)] is close to zero for

we call the elastic regime.

ered from Eq.(9) by putting a—. We plot this limiting

(viscous regime to an elastic one.
Figure 5 shows the solutions whes+ 1.0. In this case we

The extreme non-Newtonigelastig regime is studied in

most of the frequencies, and only at certain frequencies do

case in Fig. 1. As can be seen from the figure, bothwe see sharp resonances. In this regime the system acts as a
R F(«)] and InfF(«)] coincide exactly with the Newton- windowfor these frequencies.

ian limiting case studied in Biot's worksee Fig. 4 in Ref.
[1]). This graph demonstrates a breakdown in the Poiseuillas long ase>a.=11.64 (Figs. 2 and 3 R§F(«)] is al-

flow as the frequency increasé®call that«e« ). In all
our calculations we have used polynomial expansiondyof
andJ;, with an absolute error not exceeding £86. Thus

our calculation results are accurate to this order.

A finite-but-large« regime is shown in the next two fig-

Another noteworthy observation is that, on the one hand,

ways greater than its initial value, i.e., [ «)]>1, and for
large frequencies it reaches a certain asymptotic value. On
the other hand, whem<a. (Figs. 4—-6, we observe an

overall decrease in RE(«)] with the increase in frequency,

ures. Figure 2 corresponds to the case wherl(*. We see

in Fig. 2 that the real and imaginary parts léfx) start to
deviate from the Newtonian fluid behavior latge frequen-
cies. In Fig. 3, solutions correspond to the case when

i.e., R§F(x)]<1 for all k's.

In Fig. 7 we also study the behavior of the dimensionless
dynamic permeabilitK* (w, ) as a function ofw, , the di-
mensionless frequency defined ag =t o, for the case
whena=0.1. Sincea< ., We observe sharp resonances in

=100.0; thus we see how viscoelastic effects already becortbe dynamic permeability at certain frequencies, which can
be explained by the non-Newtonian behavior of the fluid.

pronounced akow frequencies.

2.5

Re[F(r})], Im[F(x)]

FIG. 3. Same as in Fig. 1, but far=100.0.

046304-3

0.8 -1
0.6 =
0.4
0.2 [

Re[F(x)), Im[F(x)]

|-
-
0.2 1
\
04 H
-0.6 1 1 1 1 1

FIG. 5. Same as in Fig. 1, but far=1.0.
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FIG. 6. Same as in Fig. 1, but far=10"°. FIG. 7. Behavior of REK*(w,)]=ReK(w,)/K(0)] (solid
line) and INfK*(w,)]=IM[K(w,)/K(0)] (dashed ling as func-
1. DISCUSSION tion of w, according to Eq(6). Herea=0.1.

In this paper we have studied non-Newtonian effects Onince £ () uniquely determines the response of a realistic
the dynamics of fluids in porous media by calculating a flowyiq_saturated porous medium to the elastic waves. Thus a

of Maxwell fluid in a tube, which oscillates longitudinally yetermination of («) for non-Newtoniar(Maxwell) fluid is
and is subject to an oscillatory pressure gradient. The prese%Cessary to guide e.g., oil-field exploration applicati¢h.
study investigates modifications of the classic Biot thedify As we have seen from Fig. 7, non-Newtonian effects cause

of propagation of elastic waves in a fluid-saturated poroug hsiantial enhancements in the dynamic permeability. We
solid by inclusion of non-Newtonian effects. We have usequre not able to determine in the literature what value af

time Fourier trapsform, and converted the problem to thenatural crude oil would have. However, as can be seen from
frequency domain. We have calculated the dynamic permesjg 7 for o= 0.1, we can obtain an increase in permeability

ability, thus modifyiljg thg work of del Rio, Lope; de. Haro, up to 60 times at certain resonant frequencies. Lower
and_ Wh|take|{4] by |nclu5|on_of the_ effect of Iongltudlnally yield even more drastic enhancements. At any rate, we ob-
oscnlatmg_ tube walls. We |nve§t|gated how t.he funCt'Ontained an analytical expression ¢ «) [Eq. (9)], which can
F_(K_), which measures the deviation from P0|_seU|IIe _ﬂOWprovide the behavior of this function for any given

f_”Ct'On asa functlon_of the frequency parameiens mo_dl- In Sec. |, the practical impact of the possibility of acoustic
fied b_y non-Newtonian effects. .Our wor_k thus p_row.des 8stimulation of oil reservoirs was outlined. This result clearly
combined theory of non-Newtonian flow in a longitudinally demonstrates that, in crude oil, which can be modeled as a

oscillating tube, which constitutes the basis for a realistic,vlaxweII fluid, there are certain resonant frequencies at
model of the effects of elastic waves in a fluid-saturated POy hich oil production can be increased significantly if the

rous space. The present analy_ss_clegrly der_nonstrates the Stell is irradiated with elastic waves at these frequencies.
istence of a transition from a dissipative regime to an elastic
regime (as « decreases in which sharp enhancements of
flow (resonancesoccur. The importance of the current work
is twofold. (a) We studied modifications brought about by  This work was supported by the lowa State University
non-Newtonian effects in Biot's theory. The investigation of Center for Advanced Technology Development, and
the functionF () is important for a number of applications, ETREMA Products, Inc.
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