
PHYSICAL REVIEW E, VOLUME 63, 046304
Enhancement in the dynamic response of a viscoelastic fluid flowing
through a longitudinally vibrating tube

David Tsiklauri* and Igor Beresnev
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~Received 9 October 2000; published 23 March 2001!

We analyzed the effects of elasticity on the dynamics of fluids in porous media by studying the flow of a
Maxwell fluid in a tube, which oscillates longitudinally and is subject to an oscillatory pressure gradient. The
present study investigates novelties brought about in the classic Biot theory of propagation of elastic waves in
a fluid-saturated porous solid by inclusion of non-Newtonian effects that are important, for example, for
hydrocarbons. Using the time Fourier transform and transforming the problem into the frequency domain, we
calculated~a! the dynamic permeability, and~b! the functionF(k) that measures the deviation from Poiseuille
flow friction as a function of frequency parameterk. This provides a more complete theory of the flow of
Maxwell fluid through a longitudinally oscillating cylindrical tube with an oscillating pressure gradient, which
has important practical applications. This study clearly shows the transition from a dissipative regime to an
elastic regime in which sharp enhancements~resonances! of the flow are found.
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I. INTRODUCTION

A quantitative theory of propagation of elastic waves in
fluid-saturated porous solid was formulated in classic pap
by Biot @1#. One of the major findings of Biot’s work wa
that there is a breakdown in Poisseuille flow above a cer
characteristic frequency specific to the fluid-saturated por
material. Biot theoretically studied this phenomenon by c
sidering the flow of a viscous fluid in a tube with longitud
nally oscillating walls under an oscillatory pressure gradie
Apart from its fundamental interest, the investigation of t
dynamics of fluid in porous media, under an oscillatory pr
sure gradient and oscillating pore walls, is of prime imp
tance for the recently emerged technology of acoustic sti
lation of oil reservoirs@2#. For example, it is known tha
natural pressure in an oil reservoir generally yields no m
than approximately 10% oil recovery. The residual oil is d
ficult to produce due to its naturally low mobility, and th
enhanced oil recovery operations are used to increase
duction. It was experimentally proven that there is a subs
tial increase in the net fluid flow through porous space if
latter is treated with elastic waves. However, there is a f
damental lack of understanding of the physical mechani
of fluid mobilization in saturated rock through the effect
elastic waves; the theory of such mobilization virtually do
not exist. Biot’s theory can be used to describe the inter
tion of a fluid-saturated solid with the sound for a clas
Newtonian fluid; however, oil and other hydrocarbons e
hibit significant non-Newtonian behavior@3#. The aim of this
paper is therefore to incorporate non-Newtonian effects
the classical study of Biot@1#.

Recently, del Rio, Lopez de Haro, and Whitaker@4# pre-
sented a study of enhancement in the dynamic response
viscoelastic ~Maxwell! fluid flowing in a stationary
~nonoscillating! tube under the effect of an oscillatory pre
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sure gradient. We combine this theory with the effect
acoustic oscillations of the walls of a tube introduced by B
@1#, providing a complete description of the interaction
Maxwell fluid, filling the pores, with acoustic waves.

Finally, in order to emphasize that the concept of dynam
permeability is an adequate way to describe the phen
enon, we note that this concept has been widely used be
@5#. In the Sec. II, we formulate our model, and Sec.
concludes with a discussion of the results.

II. MODEL

In this section we present our model of a Maxwell flu
flowing in a cylindrical tube whose walls are oscillating lo
gitudinally and the fluid is subject to an oscillatory pressu
gradient. We give analytical solutions of the problem in t
frequency domain.

The governing equations of the problem consist of
continuity equation for the incompressible fluid,

¹W •vW 50, ~1!

and the linearized momentum equation,

r
]vW

]t
52¹W p2¹W t̃. ~2!

HerevW , p, andr denote velocity, pressure, and mass dens
of the fluid, whereast̃ represents the viscous stress tens
We describe the viscoelatic effects of the fluid using Ma
well’s model, which assumes that

tm

]t̃

]t
52h¹W vW 2 t̃, ~3!

whereh is the viscosity coefficient, andtm is the relaxation
time.

Now let u be the velocity of the wall of the tube whic
oscillates in time ase2 ivt, wherev is the angular frequency
©2001 The American Physical Society04-1
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The flow of fluid in a cylindrical tube with longitudinally
oscillating walls can be described by a single componen
the velocity, namely, itsz componentvz ~the z axis is along
the centerline of the tube!. We use the cylindrical coordinat
system (r ,f,z) in the treatment of the problem. We intro
duce the relative velocityU1 asU15vz2u. Thus, assuming
that all physical quantities vary in time ase2 ivt, we arrive at
the following master equation forU1:

¹2U11
v2tm1 iv

n
U152

X

n
~12 ivtm!. ~4!

Here we have introduced the notations

X52S ¹p1r
]u

]t D ,

which is a sum of the applied pressure gradient and fo
exerted on the fluid from the oscillating wall of the tube a
n, which is n5h/r. Note that a no-slip boundary conditio
at the wall is assumed.

The solution of Eq.~4! can be found to be@1#

U152
X

iv
1CJ0~br !,

whereJ0 is the Bessel function, andb5A(v2tm1 iv)/n.
Applying a no-slip boundary conditionU1(a)50 at the

wall of the tube, wherea is its radius, we finally obtain

U1~r !52
X

ivF12
J0~br !

J0~ba!G
52

Xa2~12 ivtm!

n

1

~ba!2F12
J0~br !

J0~ba!G . ~5!

Defining the cross-section-averaged velocity as

Ū15
2

a2E
0

a

U1~r !rdr ,

we obtain

Ū152
Xa2~12 ivtm!

n

1

~ba!2F12
2J1~ba!

~ba!J0~ba!G[K~v!X.

~6!

HereK(v) is the dynamic permeability@4# that describes the
frequency dependent response of the tube to the applied
force on the fluid. A simple comparison reveals that Eq.~6!
closely resembles Eq.~6! of Ref. @4#, with the only differ-
ence being that we haveX in place of their]p/]z. Note that
in the case of stationary tube walls@r(]u/]t)→0# Eq. ~6!
coincides exactly with Eq.~6! of Ref. @4#. A simple calcula-
tion ~applying L’Hospital rule for the 0/0 uncertainty! shows
that limv→0K(v)5a2/(8n). Thus, following Ref.@4#, we
will introduce the dimensionless dynamic permeability
K* (v)5K(v)/K(0), which will be used later~see Fig. 7!.
Note that we were easily able to reproduce Fig. 1 of Ref.@4#,
04630
f

e

tal

s

confirming the existence of sharp resonances ofK* (v) in
the elastic regime~see below for the definition of this re
gime!.

Following the work of Biot@1#, we calculate the stress a
the wall t:

t52
h

12 ivtm
S ]U1~r !

]r D
r 5a

5
hbX

iv~12 ivtm!

J1~ba!

J0~ba!
.

~7!

Note that whentm→0, this expression obviously coincide
with the corresponding Newtonian form.

The total friction force is 2pat. Following Biot, we cal-
culate the ratio of the total friction force to the average v
locity, i.e.,

2pat

Ū1

52
2ph~ba!@J1~ba!/J0~ba!#

~12 ivtm!

3F12
2J1~ba!

~ba!J0~ba!G
21

. ~8!

A simple analysis reveals that

lim
v→0

2pat

Ū1

58ph,

which corresponds to the limiting case of the Poiseuille flo
Following Biot @1#, we also introduce a functionF(k), with
k5aAv/n, in the following manner:

2pat

Ū1

58phF~k!;

thus

F~k!52
1
4

kAi 1k2/a@J1~kAi 1k2/a!/J0~kAi 1k2/a!#

~12 ik2/a!

3F12
2J1~kAi 1k2/a!

kAi 1k2/aJ0~kAi 1k2/a!
G21

. ~9!

FIG. 1. Behavior of Re@F(k)# ~solid line! and Im@F(k)#
~dashed line! as functions ofk according to Eq.~9!. Herea5`.
4-2



lle

e

r
d
,
ll

ich

ov

ot
-

il

f

-

om

h,
n be

tive

wer

do
as a

nd,

On

,

ss

in
an

ENHANCEMENT IN THE DYNAMIC RESPONSE OF A . . . PHYSICAL REVIEW E63 046304
Note thatF(k) measures the deviation from the Poiseui
flow friction as a function of the frequency parameterk, as
introduced by Biot@1#.

In Eq. ~9!, a denotes the Deborah number@4#, which is
defined as the ratio of the characteristic time of viscous
fects tv5a2/n to the relaxation timetm , i.e. a5tv /tm
5a2/(ntm). As noted in Ref.@4#, the value of the paramete
a determines in which regime the system resides. Beyon
certain critical value (ac511.64), the system is dissipative
and viscous effects dominate. On the other hand, for smaa
(a,ac) the system exhibits a viscoelastic behavior wh
we call the elastic regime.

Note that the Newtonian flow regime can be easily rec
ered from Eq.~9! by putting a→`. We plot this limiting
case in Fig. 1. As can be seen from the figure, b
Re@F(k)# and Im@F(k)# coincide exactly with the Newton
ian limiting case studied in Biot’s work~see Fig. 4 in Ref.
@1#!. This graph demonstrates a breakdown in the Poiseu
flow as the frequency increases~recall thatk}Av). In all
our calculations we have used polynomial expansions oJ0
and J1, with an absolute error not exceeding 1026%. Thus
our calculation results are accurate to this order.

A finite-but-largea regime is shown in the next two fig
ures. Figure 2 corresponds to the case whena5104. We see
in Fig. 2 that the real and imaginary parts ofF(k) start to
deviate from the Newtonian fluid behavior atlarge frequen-
cies. In Fig. 3, solutions correspond to the case whena
5100.0; thus we see how viscoelastic effects already bec
pronounced atlow frequencies.

FIG. 2. Same as in Fig. 1, but fora5104.

FIG. 3. Same as in Fig. 1, but fora5100.0.
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Figure 4 presents the behavior of Re@F(k)# and
Im@F(k)# when a510.0. As can be seen from the grap
sharp resonances appear on the curves. This feature ca
explained by the fact that in this casea is less thanac ,
which means that the system switches from a dissipa
~viscous! regime to an elastic one.

Figure 5 shows the solutions whena51.0. In this case we
see more irregular behaviors of Re@F(k)# and Im@F(k)#
with a number of irregular spikes.

The extreme non-Newtonian~elastic! regime is studied in
Fig. 6, where we plot the solutions for the case whena
51023. In this case a notable change is that there are fe
but more pronounced spikes. Re@F(k)# is close to zero for
most of the frequencies, and only at certain frequencies
we see sharp resonances. In this regime the system acts
window for these frequencies.

Another noteworthy observation is that, on the one ha
as long asa.ac511.64 ~Figs. 2 and 3!, Re@F(k)# is al-
ways greater than its initial value, i.e., Re@F(k)#.1, and for
large frequencies it reaches a certain asymptotic value.
the other hand, whena,ac ~Figs. 4–6!, we observe an
overall decrease in Re@F(k)# with the increase in frequency
i.e., Re@F(k)#,1 for all k ’s.

In Fig. 7 we also study the behavior of the dimensionle
dynamic permeabilityK* (v* ) as a function ofv* , the di-
mensionless frequency defined asv* 5tmv, for the case
whena50.1. Sincea,ac , we observe sharp resonances
the dynamic permeability at certain frequencies, which c
be explained by the non-Newtonian behavior of the fluid.

FIG. 4. Same as in Fig. 1, but fora510.0.

FIG. 5. Same as in Fig. 1, but fora51.0.
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III. DISCUSSION

In this paper we have studied non-Newtonian effects
the dynamics of fluids in porous media by calculating a fl
of Maxwell fluid in a tube, which oscillates longitudinall
and is subject to an oscillatory pressure gradient. The pre
study investigates modifications of the classic Biot theory@1#
of propagation of elastic waves in a fluid-saturated por
solid by inclusion of non-Newtonian effects. We have us
time Fourier transform, and converted the problem to
frequency domain. We have calculated the dynamic per
ability, thus modifying the work of del Rio, Lopez de Har
and Whitaker@4# by inclusion of the effect of longitudinally
oscillating tube walls. We investigated how the functi
F(k), which measures the deviation from Poiseuille flo
friction as a function of the frequency parameterk, is modi-
fied by non-Newtonian effects. Our work thus provides
combined theory of non-Newtonian flow in a longitudinal
oscillating tube, which constitutes the basis for a realis
model of the effects of elastic waves in a fluid-saturated
rous space. The present analysis clearly demonstrates th
istence of a transition from a dissipative regime to an ela
regime ~as a decreases!, in which sharp enhancements
flow ~resonances! occur. The importance of the current wo
is twofold. ~a! We studied modifications brought about b
non-Newtonian effects in Biot’s theory. The investigation
the functionF(k) is important for a number of applications

FIG. 6. Same as in Fig. 1, but fora51023.
as

J

d

04630
n

nt

s
d
e
e-

c
-
ex-
ic

f

sinceF(k) uniquely determines the response of a realis
fluid-saturated porous medium to the elastic waves. Thu
determination ofF(k) for non-Newtonian~Maxwell! fluid is
necessary to guide e.g., oil-field exploration applications.~b!
As we have seen from Fig. 7, non-Newtonian effects ca
substantial enhancements in the dynamic permeability.
were not able to determine in the literature what value ofa a
natural crude oil would have. However, as can be seen f
Fig. 7 for a50.1, we can obtain an increase in permeabil
of up to 60 times at certain resonant frequencies. Lowera ’s
yield even more drastic enhancements. At any rate, we
tained an analytical expression forF(k) @Eq. ~9!#, which can
provide the behavior of this function for any givena.

In Sec. I, the practical impact of the possibility of acous
stimulation of oil reservoirs was outlined. This result clea
demonstrates that, in crude oil, which can be modeled a
Maxwell fluid, there are certain resonant frequencies
which oil production can be increased significantly if th
well is irradiated with elastic waves at these frequencies
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FIG. 7. Behavior of Re@K* (v* )#5Re@K(v* )/K(0)# ~solid
line! and Im@K* (v* )#5Im@K(v* )/K(0)# ~dashed line!, as func-
tion of v* according to Eq.~6!. Herea50.1.
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